Matrices algebra l.

Clasificado en Otras materias

Escrito el en español con un tamaño de 8,65 KB

Método de Gauss

Sea A = (ai j ) una matriz cuadrada de orden n. Para calcular la matriz inversa de A, que denotaremos como A-1, seguiremos los siguientes pasos:

Paso 1. Construir la matriz n ð 2n M = (A
I ) esto es, A está en la mitad izquierda de M y la matriz identidad I en la derecha.

Paso 2. Se deja tal y como está la primera fila de M, y debajo del primer término de la diagonal principal, a11, que llamaremos pivote, ponemos ceros. Luego se opera como se indica en el siguiente ejemplo.

Ejemplo:

Consideremos una matriz 3 ð 3 arbitraria


Paso 1.


Paso 2.


El siguiente paso es igual que el anterior, pero esta vez se coge como pivote el segundo término de la diagonal principal.

Al llegar al último término de la diagonal, se procede igual que antes, pero poniendo los ceros encima del nuevo pivote. Se observa que al coger como pivote el último término de la diagonal, la matriz A se transforma en una matriz triangular.

Una vez realizados todos los pasos, la mitad izquierda de la matriz M se convierte en una matriz diagonal. En este momento hay que proceder a transformar, si es que no lo está, la mitad izquierda en la matriz identidad, dividiendo si fuera necesario las filas de M por un escalar.

Ejemplo:

Supongamos que queremos encontrar la inversa de


Primero construimos la matriz M = (A
I),





La mitad izquierda de M está en forma triangular, por consiguiente, A es invertible. Si hubiera quedado toda una fila con ceros en la mitad A de M, la operación habría terminado (A no es invertible).

A continuación, cogemos como pivote a33, ponemos ceros encima de éste y seguimos operando hasta que nos quede una matriz diagonal.


Ya que la matriz colocada en la mitad izquierda es diagonal, no hay que operar más. Transformamos la matriz diagonal en una matriz identidad; para ello hay que dividir la segunda fila entre -1:



La matriz que ha quedado en la mitad derecha de M es precisamente la matriz inversa de A:


Para comprobar si el resultado es correcto, se procede a multiplicar AA-1, teniendo que dar como resultado la matriz identidad I.

Comprobación:

AA-1 = I

Matriz fila

Una matriz fila está constituida por una sola fila.

Matriz columna

La matriz columna tiene una sola columna

Matriz rectangular

La matriz rectangular tiene distinto número de filas que de columnas, siendo su dimensión mxn.

Matriz cuadrada

La matriz cuadrada tiene el mismo número de filas que de columnas.

Los elementos de la forma aii constituyen la diagonal principal.

La diagonal secundaria la forman los elementos con i+j = n+1.

Matriz nula

En una matriz nula todos los elementos son ceros.

Matriz triangular superior

En una matriz triangular superior los elementos situados por debajo de la diagonal principal son ceros.

Matriz triangular inferior

En una matriz triangular inferior los elementos situados por encima de la diagonal principal son ceros.

Matriz diagonal

En una matriz diagonal todos los elementos situados por encima y por debajo de la diagonal principal son nulos.

Matriz escalar

Una matriz escalar es una matriz diagonal en la que los elementos de la diagonal principal son iguales.

Matriz identidad o unidad

Una matriz identidad es una matriz diagonal en la que los elementos de la diagonal principal son iguales a 1.

Matriz traspuesta

Dada una matriz A, se llama matriz traspuesta de A a la matriz que se obtiene cambiando ordenadamente las filas por las columnas

(At)t = A

(A + B)t = At + Bt

(? ·A)t = ?· At

(A ·  B)t = Bt · At

Matriz regular

Una matriz regular es una matriz cuadrada que tiene inversa.

Matriz singular

Una matriz singular no tiene matriz inversa.

Matriz idempotente

Una matriz, A, es idempotente si:

A2 = A.

Matriz involutiva

Una matriz, A, es involutiva si:

A2 = I.

Matriz simétrica

Una matriz simétrica es una matriz cuadrada que verifica:

A = At.

Matriz antisimétrica o hemisimétrica

Una matriz antisimétrica o hemisimétrica es una matriz cuadrada que verifica:

A = -At.

Matriz ortogonal

Una matriz es ortogonal si verifica que:

A·At = I.

Dadas dos matrices de la misma dimensión, A=(aij) y B=(bij), se define la matriz suma como: A+B=(aij+bij). Es decir, aquella matriz cuyos elementos se obtienen: sumando los elementos de las dos matrices que ocupan la misma misma posición.


Es una ley de composición interna con las siguientes
PROPIEDADES :

· Asociativa : A+(B+C) = (A+B)+C
· Conmutativa : A+B = B+A
· Elem. neutro : ( matriz cero 0m×n ) , 0+A = A+0 = A
· Elem. simétrico : ( matriz opuesta -A ) , A + (-A) = (-A) + A = 0

Dos matrices A y B se dicen multiplicables si el número de columnas de A coincide con el número de filas de B.

Mm x n x Mn x p = M m x p

El elemento cij de la matriz producto se obtiene multiplicando cada elemento de la fila i de la matriz A por cada elemento de la columna j de la matriz B y sumándolos.


Propiedades del producto de matrices

Asociativa:

A · (B · C) = (A · B) · C

Elemento neutro:

A · I = A

Donde I es la matriz identidad del mismo orden que la matriz A.

No es Conmutativa:

A · B ? B · A

Distributiva del producto respecto de la suma:

A · (B + C) = A · B + A · C

Entradas relacionadas: